🧪 Class Test – Chapters: Solutions, Electrochemistry & Chemical Kinetics: Answers

 

Answers


Q1.
Given:
Mass of NaCl = 5.85 g
Molar mass of NaCl = 58.5 g/mol → moles = 0.1 mol
Mass of water = 100 g → moles of water = 100/18 = 5.56 mol
Vapour pressure of pure water P0=23.8P^0 = 23.8 mmHg

NaCl dissociates into Na⁺ and Cl⁻ → Van’t Hoff factor i=2i = 2

Relative lowering in vapour pressure =

ΔP=insolutensolute+nsolventP0=20.10.1+5.5623.80.83 mm Hg\Delta P = i \cdot \frac{n_{\text{solute}}}{n_{\text{solute}} + n_{\text{solvent}}} \cdot P^0 \\ = 2 \cdot \frac{0.1}{0.1 + 5.56} \cdot 23.8 \approx 0.83 \text{ mm Hg}

Q2.
Standard EMF:

Ecell=EcathodeEanode=0.34 V(0.76 V)=1.10 VE^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \\ = 0.34\ \text{V} - (-0.76\ \text{V}) = 1.10\ \text{V}

Q3.
Rate law: R=k[A]2[B]R = k[A]^2[B]
Order = 2 (from A) + 1 (from B) = 3

Change:
[A]2[A], [B]12[B][A] \rightarrow 2[A],\ [B] \rightarrow \frac{1}{2}[B]
New rate = k(2[A])2(12[B])=4k[A]212[B]=2k[A]2[B]


So, rate doubles.


Q4.
Van’t Hoff factor (i) = Actual number of particles / Expected number of particles
It helps to determine colligative properties when a solute undergoes dissociation or association.
For electrolytes:

i=1+α(n1)i = 1 + \alpha(n - 1)

(where
\alpha
= degree of dissociation, n = number of particles)

So, iis used to calculate thedegree of dissociation.


Q5.
Zero-order reaction:
Rate law: Rate=k\text{Rate} = k
Unit of rate = mol L⁻¹ s⁻¹
So, units of k = mol L⁻¹ s⁻¹


Q6.
Mass of glucose = 18 g
Molar mass = 180 g/mol → moles = 0.1 mol
Mass of water = 100 g → moles = 5.56 mol

Relative lowering in vapour pressure:

ΔPP0=nsolutensolute+nsolvent=0.10.1+5.560.0177\frac{\Delta P}{P^0} = \frac{n_{\text{solute}}}{n_{\text{solute}} + n_{\text{solvent}}} = \frac{0.1}{0.1 + 5.56} \approx 0.0177

Q7.

Ecell=EcathodeEanode=0.34 V(0.44 V)=0.78 VE^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \\ = 0.34\ \text{V} - (-0.44\ \text{V}) = 0.78\ \text{V}

Q8.
Rate law: R=k[A][B]2R = k[A][B]^2
Order = 1 + 2 = 3

Change:

[A]2[A], [B]2[B]Rnew=k(2[A])(2[B])2=k2[A]4[B]2=8k[A][B]2=8R[A] \rightarrow 2[A],\ [B] \rightarrow 2[B] \\ R_{\text{new}} = k(2[A])(2[B])^2 = k \cdot 2[A] \cdot 4[B]^2 = 8k[A][B]^2 = 8 \cdot R

So, rate increases 8 times.


Q9.
Abnormal molar mass is observed when a solute dissociates or associates in solution, causing deviation from expected molar mass.

Correct molar mass:

Observed molar mass=Normal molar massi\text{Observed molar mass} = \frac{\text{Normal molar mass}}{i}

So, Van’t Hoff factor helps adjust for abnormal behaviour and calculate true molar mass.


Q10.
For first-order reaction:
Rate = k[A]units of k = s⁻¹

Rate law = Rate=k[H2O2]\text{Rate} = k[H_2O_2]

No comments:

Post a Comment