SOLUTIONS: COLLIGATIVE PROPERTY

 5 important numericals based on all four colligative properties including van’t Hoff factor (i) — aligned with CBSE PYQs and exam style:


1. Relative Lowering of Vapour Pressure (PYQ Style)

Q: 5.85 g of NaCl is dissolved in 100 g of water. Calculate the relative lowering of vapour pressure. (Given: Molar mass of NaCl = 58.5 g/mol, i = 2)

Concepts Involved:

  • Mole calculation
  • Raoult’s Law
  • Use of van’t Hoff factor

2. Elevation of Boiling Point

Q: 3.42 g of sucrose (C₁₂H₂₂O₁₁) is dissolved in 180 g of water. Calculate the elevation in boiling point. (Kb = 0.52 K·kg/mol, Molar mass of sucrose = 342 g/mol)

Concepts Involved:

  • Molality
  • Non-electrolyte (i = 1)
  • ΔTb = i·Kb·m

3. Depression in Freezing Point (CBSE 2020)

Q: 1.8 g of glucose is dissolved in 100 g of water. Calculate depression in freezing point. (Kf = 1.86 K·kg/mol, Molar mass of glucose = 180 g/mol)


4. Osmotic Pressure

Q: Calculate the osmotic pressure of a solution containing 0.5 mol NaCl in 2 L solution at 27°C. (R = 0.0821 L·atm/mol·K, i = 2)

Concepts Involved:

  • π = i·M·R·T
  • NaCl dissociation

5. Van’t Hoff Factor (Abnormal Mol. Mass)

Q: 0.1 mol of K₂SO₄ is dissolved in 1 kg water. The freezing point is found to be depressed by 0.488 K. Calculate the van’t Hoff factor (i) and degree of dissociation. (Kf = 1.86 K·kg/mol)

Concepts Involved:

  • Use i = ΔTf / (Kf·m)
  • K₂SO₄ dissociates into 3 ions → Theoretical i = 3
  • Use of degree of dissociation formula
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


ANSWERS:

1. Relative Lowering of Vapour Pressure

Q: 5.85 g of NaCl is dissolved in 100 g of water. Calculate the relative lowering of vapour pressure.
(Given: Molar mass of NaCl = 58.5 g/mol, i = 2)

Solution:

  • Moles of NaCl (solute)

    nsolute=5.8558.5=0.1moln_{\text{solute}} = \frac{5.85}{58.5} = 0.1 \, \text{mol}
  • Moles of water (solvent)

    nsolvent=100185.56moln_{\text{solvent}} = \frac{100}{18} \approx 5.56 \, \text{mol}
  • Relative lowering of vapour pressure:

    ΔPP0=insolutensolute+nsolvent\frac{\Delta P}{P_0} = i \cdot \frac{n_{\text{solute}}}{n_{\text{solute}} + n_{\text{solvent}}}
  • Substitute values:

    ΔPP0=20.10.1+5.56=20.15.660.0353\frac{\Delta P}{P_0} = 2 \cdot \frac{0.1}{0.1 + 5.56} = 2 \cdot \frac{0.1}{5.66} \approx 0.0353

Answer: Relative lowering of vapour pressure ≈ 0.0353



🔷 Question 2: Elevation of Boiling Point

Q: 3.42 g of sucrose (C₁₂H₂₂O₁₁) is dissolved in 180 g of water. Calculate the elevation in boiling point.
Given:

  • Molar mass of sucrose = 342 g/mol

  • Kb (for water) = 0.52 K·kg/mol

  • Mass of water = 180 g = 0.180 kg

  • Sucrose is a non-electrolyte, so van’t Hoff factor i = 1


Step-by-Step Solution

🔹 Step 1: Calculate moles of solute (sucrose)

Moles of sucrose=Given massMolar mass=3.42342=0.01mol\text{Moles of sucrose} = \frac{\text{Given mass}}{\text{Molar mass}} = \frac{3.42}{342} = 0.01 \, \text{mol}


🔹 Step 2: Calculate molality (m)

Molality is defined as moles of solute per kg of solvent:

m=0.01mol0.180kg0.0556mol/kgm = \frac{0.01 \, \text{mol}}{0.180 \, \text{kg}} \approx 0.0556 \, \text{mol/kg}


🔹 Step 3: Use the formula for elevation in boiling point

ΔTb=iKbm\Delta T_b = i \cdot K_b \cdot m

Substitute the known values:

ΔTb=10.520.0556=0.0289K\Delta T_b = 1 \cdot 0.52 \cdot 0.0556 = 0.0289 \, \text{K}


Final Answer:

ΔTb0.0289K\boxed{\Delta T_b \approx 0.0289 \, \text{K}}

So, the boiling point of the solution is raised by approximately 0.0289 K compared to pure water.



🔷 Question 3: Depression in Freezing Point (CBSE 2020 Style)

Q: 1.8 g of glucose is dissolved in 100 g of water. Calculate the depression in freezing point.
Given:

  • Molar mass of glucose (C₆H₁₂O₆) = 180 g/mol

  • Kf (for water) = 1.86 K·kg/mol

  • Mass of water = 100 g = 0.100 kg

  • Glucose is a non-electrolyte → van’t Hoff factor (i) = 1


Step-by-Step Solution

🔹 Step 1: Calculate moles of solute (glucose)

Moles of glucose=Given massMolar mass=1.8180=0.01mol\text{Moles of glucose} = \frac{\text{Given mass}}{\text{Molar mass}} = \frac{1.8}{180} = 0.01 \, \text{mol}


🔹 Step 2: Calculate molality (m)

Molality=Moles of soluteMass of solvent in kg=0.010.100=0.1mol/kg\text{Molality} = \frac{\text{Moles of solute}}{\text{Mass of solvent in kg}} = \frac{0.01}{0.100} = 0.1 \, \text{mol/kg}


🔹 Step 3: Apply the formula for depression in freezing point

ΔTf=iKfm\Delta T_f = i \cdot K_f \cdot m

Substitute the values:

ΔTf=11.860.1=0.186K\Delta T_f = 1 \cdot 1.86 \cdot 0.1 = 0.186 \, \text{K}


Final Answer:

ΔTf=0.186K\boxed{\Delta T_f = 0.186 \, \text{K}}

So, the freezing point of the solution is lowered by 0.186 K compared to pure water.



🔷 Question 4: Osmotic Pressure

Q: Calculate the osmotic pressure of a solution containing 0.5 mol NaCl in 2 L solution at 27°C.
Given:

  • n=0.5moln = 0.5 \, \text{mol}

  • V=2LV = 2 \, \text{L}

  • T=27C=300KT = 27^\circ C = 300 \, \text{K}

  • R=0.0821L.atm / mole K

  • NaCl is an electrolyte → it dissociates into Na⁺ and Cl⁻

  • So, van’t Hoff factor (i) = 2


Concept Used:

π=iMRT\pi = i \cdot M \cdot R \cdot T

Where:

  • π\pi = osmotic pressure

  • ii = van’t Hoff factor

  • MM = molarity = nV\frac{n}{V}

  • RR = gas constant

  • TT = temperature in Kelvin


Step-by-Step Calculation

🔹 Step 1: Calculate molarity (M)

M=0.5mol2L=0.25mol/LM = \frac{0.5 \, \text{mol}}{2 \, \text{L}} = 0.25 \, \text{mol/L}


🔹 Step 2: Use the formula for osmotic pressure

π=iMRT\pi = i \cdot M \cdot R \cdot T

Substitute values:

π=20.250.0821300\pi = 2 \cdot 0.25 \cdot 0.0821 \cdot 300 π=20.2524.63=26.1575=12.315atm\pi = 2 \cdot 0.25 \cdot 24.63 = 2 \cdot 6.1575 = 12.315 \, \text{atm}


Final Answer:

π=12.32atm\boxed{\pi = 12.32 \, \text{atm}}

So, the osmotic pressure of the solution is approximately 12.32 atm.



ANSWER 5:🧪 Given:

  • Moles of K₂SO₄ = 0.1 mol

  • Mass of water = 1 kg

  • Kf=1.86K\cdotpkg/molK_f = 1.86 \, \text{K·kg/mol}

  • ΔTf=0.488K\Delta T_f = 0.488 \, \text{K}

  • Molality m=0.11=0.1mol/kgm = \frac{0.1}{1} = 0.1 \, \text{mol/kg}

  • Dissociation:

    K2SO42K++SO42itheoretical=3\text{K}_2\text{SO}_4 \rightarrow 2\text{K}^+ + \text{SO}_4^{2-} \Rightarrow i_{\text{theoretical}} = 3

✅ (a) Calculate van’t Hoff factor (i):

i=ΔTfKfm=0.4881.86×0.1=0.4880.1862.62i = \frac{\Delta T_f}{K_f \cdot m} = \frac{0.488}{1.86 \times 0.1} = \frac{0.488}{0.186} \approx \boxed{2.62}


✅ (b) Calculate Degree of Dissociation (α):

We use the relation:

i=1+2αi = 1 + 2\alpha

Substitute i=2.62i = 2.62:

2.62=1+2α2α=1.62α=1.622=0.812.62 = 1 + 2\alpha \Rightarrow 2\alpha = 1.62 \Rightarrow \alpha = \frac{1.62}{2} = \boxed{0.81}


🔚 Final Answers (for ΔTf = 0.488 K):

  • Van’t Hoff factor (i) = 2.62\boxed{2.62}

  • Degree of dissociation (α) = 0.81 or 81%\boxed{0.81 \text{ or } 81\%}




No comments:

Post a Comment