Monday, 7 July 2025

NCERT Intext Questions 3.1 to 3.9 from Chapter 4 – Chemical Kinetics (Class 12)

 

NCERT Intext Questions 3.1 to 3.9 from Chapter 4 – Chemical Kinetics (Class 12) along with their correct and detailed answers:


NCERT Class 12 Chemistry – Chapter 4: Chemical Kinetics

Intext Questions (Q3.1 to Q3.15)

Q3.1
From the rate expressions, determine the order of reaction and the dimensions of the rate constant.


Q3.2
For the reaction 2A+BA2B2A + B \rightarrow A_2B with rate = k[A][B]2k[A][B]^2 and k=2.0×106 mol2 L2 s1k = 2.0\times10^{-6}\ \text{mol}^{-2}\ \text{L}^2\ \text{s}^{-1}, calculate the rate when:

  • (i) [A] = 0.1 mol/L and [B] = 0.2 mol/L

  • (ii) [A] = 0.06 mol/L and [B] = 0.2 mol/L


Q3.3
Ammonia decomposition (zero-order): 2NH3N2+3H22NH_3 \rightarrow N_2 + 3H_2
Given: k=2.5×104 mol L1s1k = 2.5 \times 10^{-4}\ \text{mol L}^{-1} \text{s}^{-1}.
Calculate the rate of decomposition of NH₃, and the rates of formation of N₂ and H₂.


Q3.4
The decomposition of CH₃OCH₃ follows:
Rate=k[PCH3OCH3]3/2\text{Rate} = k[P_{CH_3OCH_3}]^{3/2}.
If pressure is expressed in bar and time in minutes, what will be the units of rate constant kk?


Q3.5
List the factors affecting the rate of a chemical reaction.


Q3.6
For a second-order reaction (Rate[R]2\text{Rate} \propto [R]^2):
(i) What happens to the rate if [R] is doubled?
(ii) What happens to the rate if [R] is halved?


Q3.7
Explain the effect of temperature on rate constant using the Arrhenius equation.


Q3.8
For a pseudo first-order reaction, calculate the average rate from t=30st = 30 \, \text{s} to t=60st = 60 \, \text{s} given:
[A]30=0.31mol/L, [A]60=0.17mol/L[A]_{30} = 0.31 \, \text{mol/L}, \ [A]_{60} = 0.17 \, \text{mol/L}.


Q3.9
Given: Rate = k[A]1[B]2k[A]^1[B]^2
(i) Write the rate law expression.
(ii) If [B] is tripled, by what factor does the rate change?
(iii) If [A] and [B] both are doubled, by what factor does the rate change?


Q3.10
From the following data, determine the order of reaction with respect to A and B:

[A] (mol/L)[B] (mol/L)Initial Rate (mol L⁻¹ s⁻¹)
0.200.305.07 × 10⁻⁵
0.200.105.07 × 10⁻⁵
0.400.051.43 × 10⁻⁴

Q3.11
From the following data, determine the order of reaction with respect to A and B and calculate the rate constant:

Exp.[A] (mol/L)[B] (mol/L)Rate (mol L⁻¹ min⁻¹)
I0.10.16.0 × 10⁻³
II0.30.27.2 × 10⁻²
III0.30.42.88 × 10⁻¹
IV0.40.12.40 × 10⁻²

Q3.12
A reaction is first-order in A and zero-order in B. Complete the following table:

Exp.        [A]                [  B]                     Rate
I        0.1                0.1                        2.0 × 10⁻²
II        0.2                0.2                              ?
III        0.4                0.4                               ?
IV        0.1                0.2                               ?     


Q3.13
For a first-order reaction, calculate the half-life period t1/2t_{1/2} for:
(i) k=200s1k = 200 \, \text{s}^{-1}.
(ii) k=2min1k = 2 \, \text{min}^{-1}.
(iii) k=4yr1   


Q3.14
A radioactive sample of 14C^{14}C has a half-life of 5730 years. Calculate the age of a sample in which only 80% of the original 14C^{14}C is left undecayed.


Q3.15
For the decomposition of N2O5N_2O_5, data of concentration vs time is given.
(i) Plot [N2O5][N_2O_5] vs time.
(ii) Determine the half-life.
(iii) Plot log[N2O5]\log [N_2O_5] vs time and comment.
(iv) Write the rate law of the reaction.

No comments:

Post a Comment